Become a Creator today!Start creating today - Share your story with the world!
Start for free
00:00:00
00:00:01
#124 State Space Models & Structural Time Series, with Jesse Grabowski image

#124 State Space Models & Structural Time Series, with Jesse Grabowski

S1 E124 · Learning Bayesian Statistics
Avatar
0 Plays7 days ago

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Bayesian statistics offers a robust framework for econometric modeling.
  • State space models provide a comprehensive way to understand time series data.
  • Gaussian random walks serve as a foundational model in time series analysis.
  • Innovations represent external shocks that can significantly impact forecasts.
  • Understanding the assumptions behind models is key to effective forecasting.
  • Complex models are not always better; simplicity can be powerful.
  • Forecasting requires careful consideration of potential disruptions. Understanding observed and hidden states is crucial in modeling.
  • Latent abilities can be modeled as Gaussian random walks.
  • State space models can be highly flexible and diverse.
  • Composability allows for the integration of different model components.
  • Trends in time series should reflect real-world dynamics.
  • Seasonality can be captured through Fourier bases.
  • AR components help model residuals in time series data.
  • Exogenous regression components can enhance state space models.
  • Causal analysis in time series often involves interventions and counterfactuals.
  • Time-varying regression allows for dynamic relationships between variables.
  • Kalman filters were originally developed for tracking rockets in space.
  • The Kalman filter iteratively updates beliefs based on new data.
  • Missing data can be treated as hidden states in the Kalman filter framework.
  • The Kalman filter is a practical application of Bayes' theorem in a sequential context.
  • Understanding the dynamics of systems is crucial for effective modeling.
  • The state space module in PyMC simplifies complex time series modeling tasks.

Chapters:

00:00 Introduction to Jesse Krabowski and Time Series Analysis

04:33 Jesse's Journey into Bayesian Statistics

10:51 Exploring State Space Models

18:28 Understanding State Space Models and Their Components

Recommended